model icon

scgpt

Towards Building a Foundation Model for Single-Cell Multi-omics Using Generative AI

scGPT

This is the official codebase for scGPT: Towards Building a Foundation Model for Single-Cell Multi-omics Using Generative AI.

Preprint

Documentation

!UPDATE: We have released several new pretrained scGPT checkpoints. Please see the Pretrained scGPT checkpoints section for more details.

Installation

scGPT is available on PyPI. To install scGPT, run the following command:

$ pip install scgpt

[Optional] We recommend using wandb for logging and visualization.

$ pip install wandb

For developing, we are using the Poetry package manager. To install Poetry, follow the instructions here.

$ git clone this-repo-url
$ cd scGPT
$ poetry install

Note: The flash-attn dependency usually requires specific GPU and CUDA version. If you encounter any issues, please refer to the flash-attn repository for installation instructions. For now, May 2023, we recommend using CUDA 11.7 and flash-attn<1.0.5 due to various issues reported about installing new versions of flash-attn.

Pretrained scGPT Model Zoo

Here is the list of pretrained models. Please find the links for downloading the checkpoint folders. We recommend using the whole-human model for most applications by default. If your fine-tuning dataset shares similar cell type context with the training data of the organ-specific models, these models can usually demonstrate competitive performance as well.

Model name Description Download
whole-human (recommended) Pretrained on 33 million normal human cells. link
brain Pretrained on 13.2 million brain cells. link
blood Pretrained on 10.3 million blood and bone marrow cells. link
heart Pretrained on 1.8 million heart cells link
lung Pretrained on 2.1 million lung cells link
kidney Pretrained on 814 thousand kidney cells link
pan-cancer Pretrained on 5.7 million cells of various cancer types link

Fine-tune scGPT for scRNA-seq integration

Please see our example code in examples/finetune_integration.py. By default, the script assumes the scGPT checkpoint folder stored in the examples/save directory.

To-do-list

  • Upload the pretrained model checkpoint
  • Publish to pypi
  • Provide the pretraining code with generative attention masking
  • Finetuning examples for multi-omics integration, cell type annotation, perturbation prediction, cell generation
  • Example code for Gene Regulatory Network analysis
  • Documentation website with readthedocs
  • Bump up to pytorch 2.0
  • New pretraining on larger datasets
  • Reference mapping example
  • Publish to huggingface model hub

Contributing

We greatly welcome contributions to scGPT. Please submit a pull request if you have any ideas or bug fixes. We also welcome any issues you encounter while using scGPT.

Acknowledgements

We sincerely thank the authors of following open-source projects:

Citing scGPT

@article{cui2023scGPT,
title={scGPT: Towards Building a Foundation Model for Single-Cell Multi-omics Using Generative AI},
author={Cui, Haotian and Wang, Chloe and Maan, Hassaan and Pang, Kuan and Luo, Fengning and Wang, Bo},
journal={bioRxiv},
year={2023},
publisher={Cold Spring Harbor Laboratory}
}

Related notebook

BioTuring

SpaCET: Cell type deconvolution and interaction analysis

Spatial transcriptomics (ST) technology has allowed to capture of topographical gene expression profiling of tumor tissues, but single-cell resolution is potentially lost. Identifying cell identities in ST datasets from tumors or other samples remains challenging for existing cell-type deconvolution methods. Spatial Cellular Estimator for Tumors (SpaCET) is an R package for analyzing cancer ST datasets to estimate cell lineages and intercellular interactions in the tumor microenvironment. Generally, SpaCET infers the malignant cell fraction through a gene pattern dictionary, then calibrates local cell densities and determines immune and stromal cell lineage fractions using a constrained regression model. Finally, the method can reveal putative cell-cell interactions in the tumor microenvironment. In this notebook, we will illustrate an example workflow for cell type deconvolution and interaction analysis on breast cancer ST data from 10X Visium. The notebook is inspired by SpaCET's vignettes and modified to demonstrate how the tool works on BioTuring's platform.

Ionocytes

Respiratory ciliated cells

More

BioTuring

Required GPU

SPOTlight: seeded NMF regression to deconvolute spatial transcriptomics spots with single-cell transcriptomes

Spatially resolved gene expression profiles are key to understand tissue organization and function. However, spatial transcriptomics (ST) profiling techniques lack single-cell resolution and require a combination with single-cell RNA sequencing (scRNA-seq) information to deconvolute the spatially indexed datasets. Leveraging the strengths of both data types, we developed SPOTlight, a computational tool that enables the integration of ST with scRNA-seq data to infer the location of cell types and states within a complex tissue. SPOTlight is centered around a seeded non-negative matrix factorization (NMF) regression, initialized using cell-type marker genes and non-negative least squares (NNLS) to subsequently deconvolute ST capture locations (spots). Simulating varying reference quantities and qualities, we confirmed high prediction accuracy also with shallowly sequenced or small-sized scRNA-seq reference datasets. SPOTlight deconvolution of the mouse brain correctly mapped subtle neuronal cell states of the cortical layers and the defined architecture of the hippocampus. In human pancreatic cancer, we successfully segmented patient sections and further fine-mapped normal and neoplastic cell states. Trained on an external single-cell pancreatic tumor references, we further charted the localization of clinical-relevant and tumor-specific immune cell states, an illustrative example of its flexible application spectrum and future potential in digital pathology.

T-cells

Ionocytes

More

BioTuring

Identifying tumor cells at the single-cell level using machine learning - inferCNV

Tumors are complex tissues of cancerous cells surrounded by a heterogeneous cellular microenvironment with which they interact. Single-cell sequencing enables molecular characterization of single cells within the tumor. However, cell annotation—the assignment of cell type or cell state to each sequenced cell—is a challenge, especially identifying tumor cells within single-cell or spatial sequencing experiments. Here, we propose ikarus, a machine learning pipeline aimed at distinguishing tumor cells from normal cells at the single-cell level. We test ikarus on multiple single-cell datasets, showing that it achieves high sensitivity and specificity in multiple experimental contexts. **InferCNV** is a Bayesian method, which agglomerates the expression signal of genomically adjointed genes to ascertain whether there is a gain or loss of a certain larger genomic segment. We have used **inferCNV** to call copy number variations in all samples used in the manuscript.

Theca cells

B-cells

More